解説

表面化学分析におけるソフトウェアと標準化

永富 隆清
大阪大学 大学院工学研究科 生命先端工学専攻 物質生命工学講座
〒565-0871 吹田市山田丘2-1
*nagatomi@mls.eng.osaka-u.ac.jp

(2005年5月27日受理；2005年7月19日掲載決定)

電子をプローブあるいは信号として用いた表面分析法によって得られたデータを定量的に解析するソフトウェアの開発について、固体中の電子輸送問題の観点から概説する。さらにソフトウェア開発の現状を踏まえ、トレーサビリティをキーワードとしてソフトウェアと標準化の将来像について述べる。

Software and Standardization in Surface Chemical Analysis

T. Nagatomi*
Department of Material and Life Science, Division of Advanced Science and Biotechnology,
Graduate School of Engineering, Osaka University,
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
*nagatomi@mls.eng.osaka-u.ac.jp

(Received: May 27, 2005 ; Accepted: July 19, 2005)

Development of software for quantitative analysis of experimental data obtained by surface analysis techniques, in which electrons are used as a probe or signal, is outlined from a point of view of studies on electron transport phenomena in solids. On the basis of the recent development of software, the relation between software and standardization expected in the future is described in terms of traceability as a keyword.
2. 標準化とは？
本稿の執筆は改めて「標準化とは？」と考えるよい機会となった。SASJへ参加するようになって「標準化」という言葉を日常的に聞くようになっ
たものの、正直なところ未だ「標準化とは？」と
答えて探っているのが現状である。

今振り返ってみると、筆者にとって標準化との
最初の出会いは後藤先生のスペクトルであった。
まだスペクトルもまともに測定できない学生の
頃、指導教官であった志水隆一先生が、「後藤先生
のこの美しいスペクトルを見てみなさい...」と
いったことをおっしゃられ、スペクトルを押さ
せていただいた。もう10年以上前のことである
が、「美しいスペクトル」という言葉を不思議に感
じたのを未だによく覚えている。今ではその後藤
先生のスペクトルを使用させていただき、このよ
うに「標準化」について記事を書いていた自分が
いるとは想像もしていたかった。あの出来事以
来、著者自身もスペクトルを測定し、データも解
析する中で、「美しいスペクトル」の意味が何とな
くではあるが分かるようになったのはここ最近
のことである。

後藤先生が行われているのは「絶対スペクトル
」の測定であり、世の中の「標準」となるスペク
トルである。後藤先生のデータを初めて拝見さ
せていただいて以来、筆者の中では「絶対スペク
トル」＝「標準スペクトル」の方程式が出来上がり
てしまった。「絶対」とは「真値」である。従って
筆者にとっては「真値」＝「標準」であった。と
ころが最近になって多くの方々と「標準」につい
てお話するうちに、自分のイメージしている「標
準」が一般的に語られている「標準」で大きくず
れることに気が付き始めた。「標準」とは「真
値」ではなくあくまで「トレーサビリティ (traceability)」なのである。traceabilityを辞書で印げ
ば「（跡を）たどること」とすぐに日本語訳が出
てくる。単語として見れば意味を理解することは
簡単であるが、「標準」を考えるとき。特に「世の
中の役に立つ標準」あるいは「世の中が求める標
準」を考えると。「トレーサビリティ」の意味する
ところが途端に難しくなる。

本稿では以下、この「トレーサビリティ」をキー
ードとして、表面分析におけるソフトウェアと
標準化について考えてみる。

3. 表面分析における電子輸送問題と研究の現状
本稿で対象とする表面分析法は、オージュ電子
分光法(AES), X線光電子分光法(XPS), 電子プロー
プマイクロアナライザー(EPMA), 走査電子顕微
鏡(SEM)など、電子をプローブ、あるいは信号と
して用いる表面分析法である。これら表面分析法
を用いた定量分析では、得られたスペクトルやイ
メージから試料表面の三次元的な組成・構造情報
などを如何に正確に引き出せるかが問題となる。
そのためには試料本来の特性は勿論のこと、プ
ローブ照射から信号生成・放出までの電子輸送に
関する知見が必要となる。

固体表面へ電子を照射すると、入射電子は固体
内で弾性散乱による進行方向の変化や非弾性散乱
によるエネルギー損失を被ることになる。電子の
散乱過程は、散乱断面積や平均自由行程、阻止能
など、様々な物理量によって記述することができる
。非弾性散乱では二次電子やオージュ電子、X
線(光子)などが生成される。プローブにX線など
の光子を用いた場合には光電子が生成される。こ
れら信号となる電子や光子も固体内で散乱を受け
ることになり、最終的に表面から放出され検出さ
れた信号を用いてスペクトルやイメージを得る。
これら一連のプローブ照射から信号検出までの電
子(光子)輸送過程を考えることで、スペクトルや
イメージから情報を引き出すことができる。

昨年(2004年)は、これら電子輸送に関係した国
際会議として次の3つの会議に参加した。

(1) Electron Scattering in Solids -From Fundamental
Concepts to Practical Application-, ESS Workshop
(July 4-7, 2004, Debrecen, Hungary).
(2) 3rd International Symposium on Practical Surface
Analysis, PSA-04 (October 4-6, 2004, Jeju, Korea).
(3) Workshop on Modeling Electron Transport for
Applications in Electron and X-ray Analysis and
Metrology (November 8-10, 2004, NIST, USA).
これらの国際会議では、最新の電子輸送問題に関
する多くの講演・講論が行われた。会議にはこれ
までに何度なくお会いした方々も多く参加され
ていたが、会議で受けた印象はそれまでとは大き
く異なっていた。その理由が、本稿のタイトルの一
部である「ソフトウェア」である。(2)のPSA-04は
広く表面分析一般に関する会議であり多くのJSA
読者も参加されたため、ここでは(1),(3)につい
て概説する。なお(1),(3)の会議はともに電子輸送
問題に特化した会議であった。
3-1. 散乱過程の解明

ブロープ照射から信号検出までの間の一次電子や信号電子の散乱過程は断面積などによって記述できる。表面分析において一次電子や信号電子として用いられる電子のエネルギーは一般に数keV以下の低エネルギー電子である。低エネルギー電子は固体との相互作用が強く、固体内で散乱を受ける確率が高い（断面積が大きい）。これ、表面分析法が表面に敏感な分析法であるのであるもののが、その反面、実験的に得られた結果の解析を困難にしている。固体内での電子の多重散乱や試料表面近傍のみで起こる表面励起等のため、ブロープ照射から信号放出までの起こる電子の散乱過程を解析的に（単純な数式で正確に）取り扱うことが困難となる。結果、実験的に得られたデータの解析において、モデルペルム（MC）シミュレーションに代表されるように様々な断面積などを組み合わせて電子の散乱過程をモデル化し、電子の軌道を計算するなどの手法が必要となり、解析が難しくなる。

ブロープ照射から信号検出までの一連の過程をモデル化した場合、計算によって得られる結果や実験結果の解析の精度はモデルに依存するのは勿論のこと、モデルに組み込む断面積などの物理量として何を採用するかも大きく依存する。表1にいくつかの物理量についてまとめ、それぞれの物理量について理論値や実験値、様々な文献値を集めたデータベースや、文献値から求めた値など、様々なものが報告されている。ここで最も問題となるのが、多くの場合、これが正しいか厳密に検証できないことである。固体との相互作用が強いためこれらの現象は重なり合って、例えば、弹性散乱断面積に相当する「原子が1個存在するときに1回の弹性散乱で電子が散乱される確率は○○○である。」などの値を、実験的に正確に測定することが極めて困難なためである。実験が困難なため、理論的に得られた値を評価することも難しい。

実験的・理論的に各物理量を単独で評価することが困難なため、現在では以下のような方法を用いて様々な物理量の決定に関する実験的・理論的な研究が行われている。

(i) 実験的に得られたスペクトルなどをあるモデルを仮定して解析し、実験結果から値を抽出する。
Table 1 Physical parameters used for describing electron scattering processes.

<table>
<thead>
<tr>
<th>テーブル</th>
<th>Energetic parameters used for describing electron scattering processes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>電子の</td>
<td>弹性散乱面积 (Mott 断面積は計算に用いるポテンシャルで儀が異なる [2])</td>
</tr>
<tr>
<td>弾性散乱</td>
<td>Rutherford, Mott [1]</td>
</tr>
<tr>
<td>散乱</td>
<td>非弹性散乱断面積 Dielectric approach [3], 誘電応答理論 [4]</td>
</tr>
<tr>
<td>電子の</td>
<td>非弹性散乱平均自由行程 Seah-Dench [5], TPP-2M [6], 誘電応答理論 [4]</td>
</tr>
<tr>
<td>非弾性</td>
<td>ヤオン化断面積 Gryzinski [7], Casnati [8]</td>
</tr>
<tr>
<td>散乱</td>
<td>阻止能 Bethe [9], Joy-Luo [10], 誘電応答理論 [4]</td>
</tr>
<tr>
<td>表面励起パラメータ</td>
<td>Oswald [11], Chen [12], Tanuma [13], Werner [14]</td>
</tr>
</tbody>
</table>

Table 2 Theoretical and experimental investigations of electron transport phenomena in solids.

<table>
<thead>
<tr>
<th>理論的取込</th>
<th>Tanuma et al. 非弹性散乱平均自由行程 [6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>理論的取込</td>
<td>Salvat et al. 各種散乱断面积 [15], MC シミュレーション [16]</td>
</tr>
<tr>
<td>理論的取込</td>
<td>Jablonski et al. 弹性散乱断面積 [2], 減衰長 [17]</td>
</tr>
<tr>
<td>理論的取込</td>
<td>Werner et al. MC シミュレーション [18]</td>
</tr>
<tr>
<td>理論的取込</td>
<td>Yubero et al. 非弹性散乱断面積 [19]</td>
</tr>
<tr>
<td>理論的取込</td>
<td>Tung et al. 非弹性散乱断面積 [20], 表面励起パラメータ [20]</td>
</tr>
<tr>
<td>理論的取込</td>
<td>Ding et al. 非弹性散乱断面積 [21], MC シミュレーション [22]</td>
</tr>
<tr>
<td>理論的取込</td>
<td>Joy et al. 二次電子収率 [23]</td>
</tr>
<tr>
<td>実験的取込</td>
<td>Nagatomi et al. 阻止能 [24], エネルギー損失分布 [25]</td>
</tr>
<tr>
<td>実験的取込</td>
<td>Tanuma et al. 非弹性散乱平均自由行程 [26], 表面励起パラメータ [13]</td>
</tr>
<tr>
<td>実験的取込</td>
<td>Werner et al. 非弹性散乱断面積 [14,18,27], 表面励起パラメータ [14,27]</td>
</tr>
<tr>
<td>実験的取込</td>
<td>Tougaard et al. QUAES の応用 [28]</td>
</tr>
<tr>
<td>実験的取込</td>
<td>Gergely et al. 非弹性散乱平均自由行程 [29], 表面励起パラメータ [30]</td>
</tr>
<tr>
<td>実験的取込</td>
<td>Kövér et al. 非弹性散乱平均自由行程 [31]</td>
</tr>
<tr>
<td>実験的取込</td>
<td>Cumpson et al. 非弹性散乱平均自由行程 [31]</td>
</tr>
<tr>
<td>実験的取込</td>
<td>Joy et al. 二次電子収率 [23,33]</td>
</tr>
<tr>
<td>実験的取込</td>
<td>Yoshikawa et al. 非弹性散乱断面積 [34]</td>
</tr>
<tr>
<td>実験的取込</td>
<td>Nagatomi et al. 非弹性散乱断面積 [25,35,36], 表面励起パラメータ [36]</td>
</tr>
</tbody>
</table>
(ii)理論的に得られた値をMCシミュレーションなどに組み込み、実験的に得られたスペクトルなどとの比較により検証する。
(iii)実験結果から抽出した値と理論値を比較する。

などである。表2に、理論的取り扱い、実験的取り扱いに関して、それぞれ現在までに行われている研究のいくつかをまとめた。この表をみると分かる通り、電子散乱に関する研究の多くは欧米が中心となって展開されているのが現状である。理論的取り扱いの中で最も精力的な研究を行っているグループの1つがSalvat教授等のグループで、彼等のグループでは弾性散乱、非弾性散乱、光イオン化（X線吸収、光電断面積など）などの一連の断面積を全て計算しようと試みている。実験的に取り扱いとしては、スペクトルなどを解析するために何らかのモデルが必要であり、多くのグループがソフトウェアの開発を行っているが、あるいは開発されたソフトウェアを使用しているのが一つの特徴と言える。

もう一つ、これら散乱過程を記述する物理量の導出に関する実験的・理論的な研究に共通して言えることが、得られた結果のデータベース化の推進である。データベース化を行うために現在では国際的コラボレーションが行われ、国を超えた共同研究が展開されつつある。このデータベース構築を中心に推進しているのが米国のNISTであり、その中心的役割を果たしているのがPowell博士である。次節ではこの「データベース化」について述べる。

| Table 3 Databases of physical parameters used for surface chemical analysis. |
|-------------------------------|--|
| NIST Scientific and Technical Databases | NIST X-ray Photoelectron Spectroscopy |
| -Surface Data- | NIST Electron Elastic-Scattering Cross-Section Database |
| http://www.nist.gov/srd/surface.htm | NIST Electron Inelastic-Mean-Free-Path Database |
| NIST Physical Reference Data | NIST Electron Effective-Attenuation-Length Database |
| UK Surface Analysis Forum | Binding Energies and XPS/AES spectra |
| On-line databases | X-ray transmission, absorption and emission data |
| http://www.uksafl.org/data.html | Particle/Surface interactions, including scattering data and SIMS |
| Prof. Joy (University of Tennessee) | Electron Solid Interaction Database |
| http://pccserver.bio.utk.edu/metrology/html/download.shtml | (Secondary electron yields, Backscattered electron yields, Electron stopping powers, X-ray ionization cross-sections X-ray fluorescent yields) |
| | Mott Scattering Cross-Sections |
3-2. データベース化

「データベース構築」とは必要なデータを「誰でも入手できる」環境を構築することである。ここでは海外でのデータベース構築を中心に紹介するが、日本以外で構築されたデータベースを紹介すること、さらに著名な国やNISTなどが中心となって構築しているデータベースを利用することがあることに多様な思いがある。

表3は表面分析に関係するいくつかのデータベースをまとめたものである。データベース構築に関してはNISTが果たしている役割が大きい。Werner教授によるSESSAのフリーバージョンNISTから公表される予定である。質量吸収係数を例に挙げたNISTPhysicalReferenceDataも膨大なデータベースを提供している。UKSurfaceAnalysisForumでは多くのデータベースへのリンクが用意されている。

Joy教授によるElectronSolidInteractionDatabaseには二次電子収穫や対消能などが収められており、132件もの文献から膨大なデータを集めた322ページにもわたるデータベースである。ただし集められた二次電子収穫などの値にはばらつきが大きく、どの値を使用するかはユーザーに委ねるが、Joy教授はこれら文献値をもとにしたデータベースだけでなく自らも二次電子収穫の測定を試みており、また、COMPRO(CommonDataProcessingSystem)の対象となるデータから二次電子収穫を求めることも試みているようである。

いずれにしても、これらのデータベースの構築が海外のグループ、特にNISTが中心となって進めていることは否定できない。そのような中、イオン照射によるスペクトルリング収穫などの基礎データのデータベース構築がSASJのSERDプロジェクトで進められていることは特筆に値すると言える。ここでも紹介したデータベースは海外で構築されているものばかりであるが、これからデータベースを見たJSAの読者やSASJのメンバーが、「実用表面分析に役立つデータベース」について考え、「日本でもデータベースを構築すべき」という、SASJやJSAがその議論の場となることを期待している。

3-3. 標準化

表4は、これまでに成立したISO TC201SurfaceChemicalAnalysis(SCA)に関わるISO規格のうちAES、XPSに関する規格のリストである。既にこれだけの規格が成立したのもYAMAS-SCAの活動の功労であると言える。これら規格を大きく分けると表4にあるように、「データフォーマット」に

<table>
<thead>
<tr>
<th>規格番号</th>
<th>標題</th>
<th>分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>14975</td>
<td>Information formats</td>
<td>データ</td>
</tr>
<tr>
<td>14976</td>
<td>Data transfer format</td>
<td>フォーマット</td>
</tr>
<tr>
<td>15470</td>
<td>XPS - Description of selected instrumental performance parameters</td>
<td>装置</td>
</tr>
<tr>
<td>15471</td>
<td>AES - Description of selected instrumental performance parameters</td>
<td>装置</td>
</tr>
<tr>
<td>15472</td>
<td>XPS - Calibration of energy scales</td>
<td>装置</td>
</tr>
<tr>
<td>17973</td>
<td>Medium-resolution AES - Calibration of energy scales for elemental analysis</td>
<td>装置</td>
</tr>
<tr>
<td>17974</td>
<td>High-resolution AES - Calibration of energy scales for elemental and chemical-state analysis</td>
<td>装置</td>
</tr>
<tr>
<td>18115</td>
<td>Vocabulary</td>
<td>用語</td>
</tr>
<tr>
<td>18118</td>
<td>AES and XPS - Guide to the use of experimentally determined relative sensitivity factors for the quantitative analysis of homogeneous materials</td>
<td>定量法</td>
</tr>
<tr>
<td>19318</td>
<td>XPS - Reporting of methods used for charge control and charge correction</td>
<td>装置</td>
</tr>
<tr>
<td>21270</td>
<td>XPS and AES - Linearity of intensity scale</td>
<td>装置</td>
</tr>
</tbody>
</table>
関する規格、『装置』に関する規格、『用語』、そして『定量法』と4つに大別できる。ここでこれら4つに大別したISOとソフトウェアの関係については考えてみる。

図1はISOの観点から見たISOとソフトウェアの関係である。まず全てに共通する『用語』がある。用語のうち、様々な物理量に対して「データベース」が構築できる。「データフォーマット」は『装置』間のデータ転送などに必要である。装置から得られたデータを用いて定量分析を行うためには、装置のエネルギー軸や強度軸の構成が必要となる。装置の構成を行うためには、基準となるデータベースが必要であり、定量分析においては非弾性散乱平均自由行程などのデータベースの活用が不可欠であり、データベースの汎用性の向上にはデータベースのフォーマットの定義も必要となる。このように、それぞれ定義されたISOは独立ではなく共通しており、ISOを活用するためにはデータベースが必要である。

ここでISOの観点から本稿の題目にもある「ソフトウェア(シミュレータ)」を考える。ソフトウェア内で用いられる用語は一般的に定義される用語である。様々な装置から得られたデータをソフトウェアにより定量分析するためにはデータフォーマットが必要である。解析には装置の構成はもちろんのこと、実験条件や各装置特有のパラメータは必要である。また、データを物理モデルに従って解析するためには当然データベースも必要となる。すなわち、ソフトウェア(シミュレータ)は全てが重なり合う位置に相当すると言え、それだけソフトウェアの果たす役割も大きいことになる。次にソフトウェア(シミュレータ)開発の現状について述べる。

3-4. ソフトウェア開発

もともと、シミュレータは、電子の散乱過程をモデル化して計算し、実験結果をどの程度再現できるか比較検討することで、モデルの妥当性を検証して散乱過程を考察することを目的として開発されてきた。そのため、これまでのシミュレータ開発の多くは高精度なシミュレータの開発が大きな流れであったと言える。シミュレータ開発では定量分析への応用も課題の一つであったものの、散乱過程の考察を行うために最も重要なものには『真価』であり標準化、または『トレーサーコリティ』ではなかった。ところが現在では、高精度なシミュレーションを開発して散乱過程を調べる研究も行われている一方で、ある程度の精度を確保しながらモデルを簡略化、即ち計算時間を短縮することでソフトウェア化する流れも顕著になってきた。

表5にいくつかのソフトウェア(シミュレータ)を示す。QUASESは既に日本でも使用されており、ご存知の方も多いと思われる。QUASESでは簡略化されたスペクトルの解析モデルであるTougaard法がバックグラウンド除去に用いられている。Tougaard法ではバックグラウンドの形状を決めるために微分非弾性散乱断面積(DIMFP)を用いるが、運移金属やポリマー、半導体などグループ分けを行い、それぞれに対してもユニバーサルなDIMFPを用いている点がもう一つの大きな特徴である[37]。これらの特徴によりスペクトルの解析が高速化されており、また、スペクトル解析においてユーザーの任意性も排除されていることから、QUASESを用いて同じデータを解析すれば誰が解析しても同じ結果が得られることになる。

「トレーサーコリティ」の観点から言えばQUASESのようなソフトウェアも一種の「標準化」であると言える。

近年開発が進められているSESSAについても電子転送問題を厳密に取り扱う一方、モデルの簡略化、計算速度向上のための新しい計算アルゴリズムの提案などが行われ、モデルの精度を確保しつつ
表5 シミュレータの開発

<table>
<thead>
<tr>
<th>シミュレータ</th>
<th>効果</th>
<th>データベース</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUASES</td>
<td>Quantitative Analysis of Surfaces by Electron Spectroscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESSA</td>
<td>Simulation of Electron Spectra for Surface Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTSA</td>
<td>Desk Top Spectrum Analyzer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casino</td>
<td>Monte Carlo Simulation of Electron Trajectory in Solids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENEOPE</td>
<td>Penetration and Energy Loss of Positrons and Electrons</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. ソフトウェアと標準化

最後に「ソフトウェアと標準化」の将来像について考えてみる。ISOから見たソフトウェアについては図1のところで述べた通り、全てが重なり合う位置に相当すると考えられる。しかしながら上述した通り、ソフトウェア（シミュレータ）を用いること自体が一種の標準化でありトレーニングビリティの向上へつながることから、ソフトウェアを中心にして考えることもできる。このソフトウェアを中心とした観点から「ソフトウェアと標準化」の将来像を模式的に示したのが図2である。

真髄を追求する電子送信機に関する学術的研究を行うためにはソフトウェアが必要である。逆に電子送信機をモデル化してソフトウェアへ組み込むことでソフトウェアの精度が向上する、あるいはモデルを簡略化することでソフトウェアを用いた定量解析における計算時間の短縮へとつながる。電子送信過程を記述する物理量等についてはデータの評価など学術的な課題を経てデータベースが構築され実用化される。後藤先生の標準（絶対）スペクトルもデータベースの一部であり、構築された物理量のデータベースや標準スペクトル同様、電子送信問題の研究のみならず標準化にとっても不可欠であるものの、その多くが海外で進められているのが現状である。最近では大阪工業大学志水隆一先生のグループにおいてユーザーフレンドリーなシミュレータの開発が進められている[41]もののである。表面分析の分野においては、それ以外、国内では殆ど試みられていない。今後国内においてもソフトウェア開発への取り組みが不可欠であり、実用表面分析に携わっておられる方が多数を占めるSASIこそが、その中心的役割を果たしていくのではないだろうか。
ISOが必要とも言える。ISOのガイドラインに従い、データベースを参照しながら物理モデルに則ってデータを解析できるのがソフトウェアである。多種多様な分析対象を高いトレーサビリティで分析するための有力なツールである「ソフトウェア」が「標準」となるのが来るのがではないだろうか？

表面分析に関するISOをはじめ世界の標準化は、各国の標準研究所や大学など官学が中心となって進められているという印象を受ける。これから対してSASJは表面分析の分野において世界でも珍しく、実用分析に携わっておられる産業界からの会員が多い研究会である。どんな「標準」を成立させても分析の実務に役立たなければ意味がないと考えると、産学連携でがそろったSASJこそが今後必要となる「標準」を議論し提案していく場であると言え、将来の「標準」の一つの形として「ソフトウェア」を中心とした「標準」も有り得のではないかだろうか？

5. おわりに

以上、「ソフトウェアと標準」について筆者の思うところを述べた。これまで「標準化」の実務に直接携わったこともない筆者にとって今回の執筆は大変思い出懐い機会であった。特に、第25回研究会で配布された特別資料にあたる吉原初代会長による「口伝から標準化へ」[42]と「一通の開催通知」[43]、同新座談会「一通の開催通知」を「ゆ内で」[44]を非常に興味深く、「標準化とは？」と考える上で大変参考となった。さらに最近出版されたJSAに掲載されている2代目に会長一村寺様に3代目に会長小沼氏による卷頭言[45, 46]でも将来の標準化について述べられており大変考えさせられた。しかしながら執筆の最終段階となった今でも「本当の標準とは？」という問題に対する明確な答えには至らなかった。この命題とは長い付き合いになりそうである。

本稿で述べた内容の多くは、SASJで言うところのナイトセッションでお話しした内容である。「SASJではナイトセッションで本当のアイデアが溢れてくる」とよく耳にする。そう思いながら吉原初代会長の「一通の開催通知」を拝読すると写真の半分は懇親会のようである。VAMAS-SCAの活動を直接経験したことのない筆者にとっては、VAMAS-SCAの流れを受けて設立されたSASJはこういったところも受け継いだものかと思う。SASJの
ナイトセッションでは会員の方々が老若問わず議論を行っている。また会員を見ても、これからの表面分析を支えていく若手会員も非常に多い。そういう研究会であるからこそ、みんなで議論しながら将来の「本当の標準」を考えていくのではないだろうか？本稿がそういった議論の種の一つにでもなれば幸いである。

最近ではナノテクノロジーに関する標準化が始まるという話も聞いたことがある。分析対象が微細化・高精度化される昨今、表面分析においても今後ナノテクノロジーに関連した標準化は避けられないので、他バイオテクノロジーや有機材料など、化学技術の進展は表面分析の標準化にとって大きな効果を示している。VAMAS-SCAから20年、その流れを受けたSASJが設立されて10年、当初は反対も多かったという表面分析の標準化も多くの方々の苦労と努力により20件を超える規格を成立させて現在に至っている。標準化の今後の10年について考えると難しい機会ではないだろうか？

分析装置の測定の自動化が進んでいる。もし「標準」となる「ソフトウェア(シミュレータ)」が完成したら、データの測定から定量解析までボタン一つでできる時代がやってくるかもしれない。興味を覚える反面、怖い気もするのでは筆者だけであるだろうか？

参考文献

